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There is evidence that the crystalline-state thermochromic behavior of dispiropyracene acr-1 with an
ultralong C–C bond [1.791(3) Å at 413 K, 1.771(3) Å at 93 K] might be due to thermal generation of a
bond-dissociated triplet diradical. The C1–C2 bond lengths (d) in the newly prepared 1,1,2,2-tetraarylpy-
racenes 1a–e [1.717(4)–1.761(4) Å at 113/123/153 K] are also much larger than the standard value for
C(sp3)–C(sp3) (1.54 Å). The fact that there is no correlation between d and the radical-stabilizing param-
eter (r�) provides evidence that there is no contribution from a crystallographic artifact caused by con-
tamination of the diradical in the crystal of 1 at room temperature or below. Further indication for the
covalent nature of the ultralong C–C bond in tetraphenylpyracene 1c was attained by Raman spectros-
copy, showing the far red-shifted C1–C2 stretching vibration (638 cm�1) and by the theoretical prediction
of very large vertical singlet–triplet energy gap (58.3 kcal mol�1 at the UB3LYP/6-31G* level). However, at
elevated temperatures bond dissociation might occur forming a triplet diradical.

� 2009 Elsevier Ltd. All rights reserved.
The C–C bond length (d) is one of the most fundamental param-
eters in organic chemistry,1 and a d value of 1.54 Å is assumed as
the standard length of a C(sp3)–C(sp3) single bond. This explains
why the experimentally determined d can be used to assess the
p-bond order in combination with other standard values [1.33 Å
for C(sp2)@C(sp2); 1.20 Å for C(sp)„C(sp)]. On the other hand,
there have been several reports in which the C–C single bond is
shortened or elongated independent of the bond order,2 and such
elongation is often accompanied by a strained molecular structure
and/or severe steric hindrance.3

Hexaphenylethane (HPE) is a good example of this phenom-
enon; its central C–C bond is elongated [1.67(3) Å]4 primarily
due to steric repulsion among six aryl substituents. According
to the proposed linear relationship between d and bond-dissoci-
ation energy (BDE),5 a smaller BDE is expected for a longer C–C
bond. In fact, some isolable HPE derivatives exist as equilibrated
mixtures containing bond-dissociated trityl radicals in solution.
On the other hand, ‘cross-clamped’ or ‘condensed’ derivatives
of HPE show higher thermodynamic stability because dimeriza-
ll rights reserved.
tion is switched from an intermolecular to an intramolecular
process. Thus, the HPEs with an even longer C–C bond
(d > 1.70 Å) could be isolated [1.712(5)–1.734(5) Å for 3,8-diha-
lo-1,1,2,2-tetraphenylnaphthocyclobutenes by Toda’s group6

and 1.713(2) Å for a multi-benzannulated caged hydrocarbon
by one of us7].

Recently, we also reported8a,b that a pyracene-based HPE
derivative acr-1 with two spiro(10-methylacridan) units has
an ultralong C–C bond [d = 1.771(3) Å at 93 K], which is one
of the longest ever reported9 [the d values for other crystallo-
graphically independent molecules of acr-1 are 1.758(3),
1.712(2), and 1.707(2) Å.]. The above X-ray analysis was carried
out with special care, however, there still remains some possi-
bility that the concomitant presence of a bond-dissociated
diradical might have led to the assignment of a larger d than
the intrinsic value.10,13 Our major concern in this Letter is to
shed light on the following points: (a) does a bond-dissociated
diradical exist or can it be generated in the crystal of HPEs with
an ultralong C–C bond; and (b) is the crystallographically deter-
mined very large d ( > 1.75 Å) be intrinsic or an artifact by the
concomitant presence of a bond-dissociated diradical (or dira-
dicaloid) in the crystal.



Figure 1. Single-crystalline thermochromic behavior of acr-1.
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Here we found the reversible thermochromic behavior14 of acr-
1 in the single-crystalline state, which might be related to the bond
dissociation of the ultralong bond forming the corresponding
diradical in the crystal, as shown in the first part of this Letter.
Next, we have conducted the X-ray analyses of acr-1 at several ele-
vated temperatures to see if generation/increased contribution of
the diradical at higher temperatures expands the experimentally
determined d value of acr-1. Since the marginal expansion of
0.020 Å over a temperature difference of 320� does not provide
decisive support for the diradical contribution, we have then
turned our attention to the studies on a new series of HPEs,
1,1,2,2-tetraarylpyracenes 1. The experimentally assigned d value
should change with the attachment of radical-stabilizing/non-sta-
bilizing substituents when the coexistence of a bond-dissociated
diradicals affects the apparent bond lengths determined by X-ray
analyses (Scheme 1). If the corresponding diradicals exist in equi-
librium with HPEs in the crystal,14 compounds with radical-stabi-
lizing substituents would exhibit a larger value of d than those
with non-stabilizing or radical-destabilizing substituents. The
low-temperature X-ray structures of the corresponding com-
pounds do not reveal such a relationship. The details of our results
will be shown in the last part of this Letter.

First, we noticed a color change of crystalline samples of acr-1
when they were heated in an ESR tube sealed with Ar. Similar ther-
mochromic behavior was observed by heating the single crystal-
line sample on a glass fiber (Fig. 1), where temperature control
was carried out by a N2 gas flow. At 273 K, the sample is pale yel-
low, whose color gradually turned to dark red (413 K) via orange
(333 K). This observation is not accompanied by decomposition
of acr-1 because the crystal returned to pale yellow upon cooling
to room temperature or 123 K, which still gave X-ray diffraction
data identical to those obtained before the heat treatment. A
reversible phase transition or bond fission to generate a certain
population of diradicals upon heating might be responsible for
the observed thermochromic behavior. Thus, the X-ray analysis
of acr-1 was carried out at several temperatures above
273 K.15,16 No phase transition occurs in the range between
273 K and 413 K, thus the observed thermochromic behavior is
not related to a phase transition.

The X-ray structure at 413 K is quite similar to those obtained at
lower temperatures except for the enlarged thermal ellipsoids at
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most atoms. It is noteworthy that those for C1 and C2 are still small
and round shaped (Fig. 2). The difference electron density map
indicates the presence of bonding electron between C1 and C2,
(Fig. S2) as in the case of the X-ray analysis at 93 K.8a The d value
for the bond in question is 1.791(3) Å, which is only 0.020 Å longer
than that measured at 93 K.17 The X-ray analyses at 333 K and
373 K gave the results with the intermediary structures with the
d value of 1.776(3) Å and 1.786(3) Å, respectively. As shown by To-
da’s and Siegel’s groups, 3,8-dichloro-1,1,2,2-tetraphenylnaphtho-
cyclobutene exhibits a similar degree of bond expansion
[1.710(2) Å at 90 K,6e 1.720(4) at 298 K6a].

The vertical singlet-triplet energy gap (DES-T) is a frequently
used indicator to evaluate the diradical character of molecules.18

We performed calculations at the UB3LYP/6-31G*-level of DFT
based on the X-ray geometry of acr-1 at 413 K (fixed d of
1.7922 Å) and obtained the DES-T value of 58.99 kcal mol�1. A quite
similar value (59.04 kcal mol�1) was obtained for the crystallo-
graphically independent molecule with the shortest C1–C2 bond
measured at 93 K (d = 1.7062 Å). The very large DES-T values indi-
cate that the diradical contribution to the overall wavefunction
of acr-1 is negligible at lower temperatures (compare with the
DES-T of o-, m-, and p-benzyne: 37.5, 21.0 3.8 kcal/mol).19 On the
other hand, we found a triplet minimum structure with a very
large bond distance d of 3.110 Å which energetically is only
8.14 kcal mol�1 above the singlet structure (UB3LYP/6-31G*,
Fig. S3). This species could explain the observed thermochromism
on a theoretical basis. According to TD DFT calculations the longest
wavelength absorption of the singlet state is 362 nm which is in
agreement with the fact that the crystals are almost colorless at
low temperatures. By contrast the triplet state exhibits several
average
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Figure 2. ORTEP drawings of acr-1 (top view and side view) at 413 K. Note the
small and round-shaped ellipsoids for C1 and C2.
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absorptions within the visible range (strongest bands at 450 and
475 nm; Table S1) which explain the red color of the crystals at
higher temperatures at which the triplet state will be increasingly
populated. Thus, it is clear that the ultralong C–C bond in acr-1 at
room temperature and below is intrinsic and that the concomitant
presence of bond-dissociated triplet diradical becomes important
only at higher temperatures.

To gain further insight into the nature of the ultralong bonds we
set out to crystallographically measure the bond length d in HPEs
other than acr-1. For this purpose, we designed 1,1,2,2-tetraaryl-
pyracene derivatives 1a–e as suitable HPE derivatives from the fol-
lowing viewpoints: first, the pyracene skeleton should act as a
scaffold to induce enough ‘front strain’4 to ensure the presence of
an extremely long C1–C2 bond (d > 1.70 Å), as shown by acr-1; sec-
ond, the system should be designed in such a way that the bond-
dissociated species is a diradical and not (as, e.g., in the case of
the benzocyclobutenes-type HPEs) a closed shell structure (o-
quinodimethane),20 and third, a series of compounds with various
substituents on aryl groups should be accessible via the corre-
sponding dicationic precursors.21
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Scheme 2. Preparation of tetraarylpyracenes 1a–e. Reagents: (a) (1) n-BuLi, then Ar2

propanol; (c) Zn, MeCN.
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Scheme 3. Preparation of tetraarylacenaphthenes 2a,b,d,e. Reagents: (a) (1) n-BuLi, then
propanol for 4a,b,d; TfOH, 1,1,1,3,3,3-hexafluoro-2-propanol for 4e; (c) Zn, MeCN.
We have prepared here the parent tetraphenylpyracene (1c)22

from 5,6-dibromoacenaphthene and benzophenone in three steps
via pyran 3c, as shown in Scheme 2. By starting with the substi-
tuted benzophenones, HPEs with benzyl radical-stabilizing substit-
uents on phenyl rings such as 4-tBu (1a), and 4-Me (1b) could be
similarly prepared along with those with non-stabilizing [3,5-
Me2 (1d)] and destabilizing [4-F (1e)] substituents. The desired
HPEs (1) were isolated as surprisingly stable colorless/pale yellow
solids despite the very large d value for the C1–C2 bond (vide infra).
Another series of HPEs 2 with an acenaphthene p-framework was
also designed to further support the conclusion obtained from 1.
The structurally related acenaphthene derivative acr-28a,8c has a
shorter bond length [1.696(3) Å] than acr-1 because it adopts a
skewed arylene framework to relieve steric repulsion between
two acridan units. Yet, the skeleton might be still suitable enough
to test the validity of our approach adopted here. So, 1,1,2,2-tetra-
arylacenaphthenes 2a(4-tBu),b(4-Me),d(3,5-Me2),e(4-F) were pre-
pared over three steps from 1,8-diiodonaphthalene and the
corresponding benzophenones via pyrans 4 (Scheme 3).22 The
preparation and X-ray structure of tetraphenylacenaphthene (2c)
were reported previously by Gabbaï and coworker.23

After considerable effort, we finally obtained a single-crystal
specimen of high quality for all nine kinds of HPEs 1a–e/
2a,b,d,e.16 Low-temperature X-ray analyses revealed that all of
them have an extremely long C1–C2 bond [1.717(4)–1.761(4) Å
for 1 and 1.694(3)–1.708(4) Å for 2] (Tables 1 and 2).24 No struc-
tural disorder around the C1–C2 bond was found in any case. As
represented by 4-Me derivative 1b [d = 1.717(4) Å: the smallest
among 1a–e] and 4-F derivative 1e [d = 1.761(4) Å: the largest]
(Fig. 3), the ORTEP drawings show no anomalies in thermal ellip-
soids of the long C1–C2 bond or in electron density maps. The rad-
ical-stabilizing parameters (r�)25 are also summarized in Table 1,
which quantify the thermodynamic stability of the benzyl radicals
attached with a various substituent on the benzene nucleus. As
shown by these data, HPEs with radical-stabilizing groups (1a,b/
2a,b; r� > 0) do not necessarily have larger d values than the par-
ent compound (1c/2c) or those with non-stabilizing/destabilizing
groups (1d,e/2d,e: r� < 0). Thus, the radical-stabilizing substitu-
ents do not increase the apparent bond length determined by
X-ray, which leads us to conclude that the contribution from the
bond-dissociated diradical is negligible for the present HPEs 1/2
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Table 1
Structural parameters of pyracene-type HPEs 1 determined by low-temperature X-ray
analyses and the radical-stabilizing parameters r�

Compound 1a 1b 1c 1d 1e

X 4-tBu 4-Me H 3,5-Me2 4-F
d (Å) 1.749(4) 1.717(4) 1.754(2) 1.743(2) 1.761(4)
r� 0.036 0.015 0.000 �0.002 �0.011

Table 2
Structural parameters of acenaphthene-type HPEs 2 determined by low-temperature
X-ray analyses

Compound 2a 2b 2ca 2d 2eb

X 4-tBu 4-Me H 3,5-Me2 4-F
d (Å) 1.708(4) 1.694(3) 1.701(3) 1.701(2) 1.707(2) 1.705(2)

a Ref. 23.
b Two crystallographically independent molecules.

Figure 3. ORTEP drawings of 1b (left) and 1e (right) at 123 K.

Figure 4. Experimental (a) and calculated (b) Raman spectra of 1c.
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in the crystal state even for derivatives with an ultralong C–C bond
with a d value as large as 1.76 Å.

For further validation of the crystallographically determined ex-
tremely long C–C bond, Raman spectroscopy was applied on the
crystalline samples of tetraphenyl derivatives (1c/2c). The stretch-
ing vibration of the long C1–C2 bond studied by Raman spectros-
copy at 298 K gives direct information on the force constant of
the bond. The absorption in pyracene derivative 1c with the high-
est intensity (expt. 638 cm�1) in Figure 4a corresponds to the nor-
mal mode with the largest amplitude along the trajectory of the
stretching vibration as verified by DFT calculation (B3LYP/6-
31G*: calcd 650 cm�1). There are other absorptions assigned as
normal modes that include C1–C2 stretching vibration (470, 621,
718, 812 cm�1), for which the calculation well reproduced the fre-
quencies (478, 637, 720, 825 cm�1) (Fig. 4b). The observed red-
shifted value compared to the C–C stretching vibration of ethane
itself (995 cm�1) clearly shows that the ultralong C–C bond
[dexpt = 1.754(2) Å; dcalcd = 1.759 Å] in 1c has a very small force
constant.

Not only the frequencies of the C1–C2 stretching bands but also
the other experimental spectral lines were well reproduced by the
calculation. In contrast to the X-ray analysis and NMR, Raman is a
very fast spectroscopic method. In a hypothetical equilibrium of a
closed shell species with a large d value and a diradical, both spe-
cies should appear with separate absorption bands and not as a
time-averaged spectrum like in NMR. The agreement of the exper-
imental and theoretical Raman spectrum is very good, and there
are no additional lines in the experimental spectrum, which could
not be assigned to the closed shell structure. Therefore, at room
temperature or below a diradical structure can either be com-
pletely excluded or, if there is an equilibrium, it must be present
in very little concentration in the crystalline sample of 1c.26 Raman
investigations at higher temperatures are in progress.

In conclusion, we have no reason to assume that the extremely
long (d > 1.70 Å) or ultralong (d > 1.75 Å) C–C bond in the present
HPEs gives rise to a noticeable diradical character of the corre-
sponding compounds. However, there is indication that there is a
triplet diradical in a thermal equilibrium with the closed shell
structure at higher temperatures in crystalline acr-1. Despite the
large expansion that may lower the BDE, the present HPEs exhibit
surprising chemical stability: For example, the parent 1c
[d = 1.754(2) Å] can be purified by chromatography using aerated
solvents and can be stored infinitely as solids. It remains intact
upon treatment with Et3SiH or Bu3SnH. Based on our results, stud-
ies to achieve further elongated C–C bonds are warranted with a d
value even longer than the shortest nonbonded C–C contact
(1.80 Å).27
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map of acr-1 at 413 K (Fig. S2), plots of singlet (d = 1.776 Å) and
triplet (d = 3.110 Å) species obtained by DT-DFT calculation on
acr-1 (Fig. S3), and calculated absorption bands of both singlet
and triplet species of acr-1 (Table S1). Supplementary data associ-
ated with this article can be found, in the online version, at
doi:10.1016/j.tetlet.2009.03.202.
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